Any-Com Multi-robot Path-Planning: Maximizing Collaboration for Variable Bandwidth

نویسندگان

  • Michael W. Otte
  • Nikolaus Correll
چکیده

We identify a new class of algorithms for multi-robot problems called “Any-Com” and present the first algorithm belonging to that class “Any-Com intermediate solution sharing” (or Any-Com ISS) for multi-robot path planning. AnyCom algorithms find a suboptimal solution quickly and then refine that solution subject to communication constraints. This is analogous to the “Any-Time” framework, in which a suboptimal solution is found quickly, and refined as time permits. The current paper focuses on the task of finding a coordinated set of collision-free paths for all robots in a common area. The computational load of calculating a solution is distributed among all robots, such that the robotic team becomes a distributed computer. Any-Com ISS is probabilistically/resolution complete and a particular robot contributes to the global solution as much as communication reliability permits. Any-Com ISS is “Centralized” in the planning-algorithmic sense that all robots are viewed as pieces of a composite robot; however, there is no dedicated leader and all robots have the same priority. Previous centralized multi-robot navigation algorithms make assumptions about communication topology and bandwidth that are often invalid in the real world. Any-Com allows for collaborative problem solving with graceful performance declines as communication deteriorates. Results are validated experimentally with a team of 5 robots.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Any-Com Multi-robot Path-Planning with Dynamic Teams: Multi-robot Coordination under Communication Constraints

We are interested in finding solutions to the multi-robot path-planning problem that have guarantees on completeness, are robust to communication failure, and incorporate varying team size. In this paper we present an algorithm that addresses the complete multi-robot path-planning problem from two different angles. First, dynamic teams are used to minimize computational complexity per robot and...

متن کامل

The Any-Com Approach to Multi-Robot Coordination

We propose a new class of algorithms for multirobot problems called “Any-Com”. With Any-Com, a suboptimal solution is found quickly and refined as communication permits (analogous to “Any-Time” where a suboptimal solution is refined as time permits). Any-Com can be used to mitigate the high cost of solving multi-robot problems by dividing effort among all robots the solution will benefit. This ...

متن کامل

Study of Evolutionary and Swarm Intelligent Techniques for Soccer Robot Path Planning

Finding an optimal path for a robot in a soccer field involves different parameters such as the positions of the robot, positions of the obstacles, etc. Due to simplicity and smoothness of Ferguson Spline, it has been employed for path planning between arbitrary points on the field in many research teams. In order to optimize the parameters of Ferguson Spline some evolutionary or intelligent al...

متن کامل

Dynamic Multi Period Production Planning Problem with Semi Markovian Variable Cost (TECHNICAL NOTE)

This paper develops a method for solving the single product multi-period production-planning problem, in which the production and the inventory costs of each period arc concave and backlogging is not permitted. It is also assumed that the unit variable cost of the production evolves according to a continuous time Markov process. We prove that this production-planning problem can be Stated as a ...

متن کامل

Dynamics modeling and stable gait planning of a quadruped robot in walking over uneven terrains

Quadruped robots have unique capabilities for motion over uneven natural environments. This article presents a stable gait for a quadruped robot in such motions and discusses the inverse-dynamics control scheme to follow the planned gait. First, an explicit dynamics model will be developed using a novel constraint elimination method for an 18-DOF quadruped robot. Thereafter, an inverse-dynamics...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010